• Türkçe
  • English

  EX-PROOF:


The ATEX directive consists of two EU directive describing what equipment and work environment is allowed in an environment with an explosive atmosphere. ATEX derives its name from the French title of the 94/9/EC directive: Appareils destinés à être utilisés en ATmosphères EXplosibles.

As of July 2003, organizations in EU must follow the directives to protect employees from explosion risk in areas with an explosive atmosphere.

There are two ATEX directives (one for the manufacturer and one for the user of the equipment):

  • the ATEX 95 equipment directive 94/9/EC, Equipment and protective systems intended for use in potentially explosive atmospheres;
  • the ATEX 137 workplace directive 99/92/EC, Minimum requirements for improving the safety and health protection of workers potentially at risk from explosive atmospheres.

The ATEX 94/9/EU that is dedicated to the manufacturer has changed. Always applicable up to 19 April 2016 the ATEX 94/9/EC will be removed and replaced by a new directive.

This new ATEX directive was published on Saturday 29 March 2014, under the new reference : Directive 2014/34/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to equipment and protective systems intended for use in potentially explosive atmospheres (recast) Text with EEA relevance - Official Journal of the European Union L 96 from 29/03/2014.

Technical definitions:

In DSEAR, an explosive atmosphere is defined as a mixture of dangerous substances with air, under atmospheric conditions, in the form of gases, vapours, mist or dust in which, after ignition has occurred, combustion spreads to the entire unburned mixture.Atmospheric conditions are commonly referred to as ambient temperatures and pressures. That is to say temperatures of –20 °C to 40 °C and pressures of 0.8 to 1.1 bar.

 Effective ignition source is a term defined in the European ATEX directive as an event which, in combination with sufficient     oxygen and fuel in gas, mist, vapor or dust form, can cause an explosion. Methane, hydrogen or coal dust are examples of possible fuels.

Effective ignition sources are:

  • Lightning strikes.
  • Open flames. This varies from a lit cigarette to welding activity.
  • Mechanically generated impact sparks. For example, a hammer blow on a rusty steel surface compared to a hammer blow on a flint stone. The speed and impact angle (between surface and hammer) are important; a 90 degree blow on a surface is relatively harmless.
  • Mechanically generated friction sparks. The combination of materials and speed determine the effectiveness of the ignition source. For example 4.5 m/s steel-steel friction with a force greater than 2 kN is an effective ignition source. The combination of aluminium and rust is also notoriously dangerous. More than one red hot spark is often necessary in order to have an effective ignition source.
  • Electric sparks. For example a bad electrical connection or a faulty pressure transmitter. The electric energy content of the spark determines the effectiveness of the ignition source.
  • High surface temperature. This can be the result of milling, grinding, rubbing, mechanical friction in a stuffing box or bearing, or a hot liquid pumped into a vessel. For example the tip of a lathe cutting tool can easily be 600 Celsius (1100 °F); a high pressure steam pipe may be above the autoignition temperature of some fuel/air mixtures.
  • Electrostatic discharge. Static electricity can be generated by air sliding over a wing, or a non-conductive liquid flowing through a filter screen.
  • Radiation.
  • Adiabatic compression. Air is pumped into a vessel and the vessel surface heats up.


Copyright © BFM OTOMASYON | Kullanım Şartları | Gizlilik
Veriyaz Web Tasarım